Fulminating Compounds | Science Toys (2023)

Medieval alchemists knew that gold could be dissolved in a mixture of nitric and hydrochloric acids (known as aqua regia). One of the goals of alchemy, after all, was the production of gold from cheaper materials, and divining the properties of gold was an obvious first step. They also knew that a basic substance like lye or ammonia could neutralize acids. Thus, it was almost inevitable that one of them would eventually dissolve gold in aqua regia, and then try to neutralize the acid with ammonia or potassium carbonate.

Bang.

Imagine their surprise when it exploded in their faces.

In 1585, an alchemist in Germany named Sebald Schwaertzer wrote out a formula for making what was then known as aurum fulminans, a compound we today call fulminating gold. It calls for adding eight parts of gold to concentrated nitric acid, warming it in a bath of sand, then adding 8 parts ammonium chloride. This dissolves the gold (the nitric acid allows the chloride ions to combine with the gold to make hydrogen tetrachloroaurate(III)). By making the aqua regia with ammonium chloride instead of hydrogen chloride, the resulting liquid contained quite a few ammonium ions.

The recipe then calls for adding a mixture of iron and copper sulfate solutions to the mix, to get a precipitate, which is filtered out, washed, and concentrated by evaporation into a thick solution. Finally, concentrate potassium carbonate (a strong alkali) is added carefully, so that it does not cause heavy foaming and overflow, or worse, explode. The precipitate is purple crystals of fulminating gold. The recipe says the whole process takes 4 days, but no more than 5 days.

The word fulminate means to explode violently (it comes from the Latin word for lightning). First applied to this compound of gold, it was later used to describe other compounds that exploded violently, such as compounds of silver and mercury. The latter compound gives name to a class of compounds called fulminates. Fulminating gold and fulminating silver are not fulminates — they just fulminate.

Chemists tried to analyze fulminating gold for centuries. It seems that no two batches of it are quite the same, and even in a single batch, there are compounds with different properties. The conclusion at this time is that each gold atom is connected to a nitrogen atom, and that oxygen atoms and chlorine atoms connect these into a non-crystalline large three-dimensional polymer.

The explosive nature of fulminating gold was noteworthy and chemists experimented with it, but it was clearly too expensive to use in weapons or mining. However, it remains the first high-explosive compound discovered. A high explosive is a chemical compound where the oxidizer and the fuel are combined in the same molecule. You may recall from the discussion of the manufacture of gunpowder that many of the improvements were due to the finer and finer mixing of the nitrates with the sulfur and charcoal. The closer the fuel is to the oxidizer, the faster the reaction can happen.

Black powder merely burns if it is not contained. In high explosives, the reaction takes place faster than the speed of sound. This means that the air cannot move out of the way fast enough to let the exploding gases out, and the air itself (and the inertia of the initial ingredients) acts like a container. We hear a sharp report as the material disintegrates into gas so fast that it generates very high pressures.

In 1786, the prolific French chemist Clause-Louis Berthollet added ammonia to precipitated silver oxide and produced fulminating silver. It was highly sensitive, exploding easily by touch or slight heating. It was also quite powerful, and, like fulminating gold, it was a high explosive.

Berthollet is known for many chemical discoveries, demonstrating the bleaching effects of chlorine gas, creating sodium hypochlorite (the bleaching agent in Clorox bleach), and (of particular interest here) producing potassium chlorate, a strong oxidizing agent that became known as Berthollet's Salt.

In 1789, another French chemist (and contemporary of Berthollet) Antoine Francois, comte de Fourcroy, described another fulminating mixture, called fulminating powder. It was a mixture of three parts potassium nitrate, two parts potassium carbonate, and one part sulfur. The ingredients were ground together in a hot marble mortar with a wooden pestle, and the powder then placed on a metal ladle and warmed until the sulfur melted. After a short while, the mixture then exploded, denting or perforating the iron ladle. In further experiments, he notes that a mixture of one part potassium sulfide to two parts potassium nitrate "fulminates more rapidly", leading him to conclude that the first mixture created potassium sulfide shortly before detonating.

Fourcroy also described another fulminating mixture, made by replacing the potassium nitrate in gunpowder with Berthollet's new discovery, potassium chlorate. This new mixture would explode when hit with a hammer.

In 1797, Pierre Bayen published Volume I of his Opuscules Chimiques, where he describes fulminating mixtures of mercury compounds with sulfur, that explode when heated.

Around this time, Luigi Brugnatelli (who later would become famous for gold electroplating) experimented with nitrates of gold, silver, and mercury, and noted that compressing them with sulfur or phosphorus could produce detonations. Belgian chemist Jean-Baptiste Van Mons also worked with oxides of noble metals combined with sulfur or phosphorous to make explosive mixtures, and notes that such mixtures produce a more uniform explosive effect than the mixtures containing potassium chlorate.

Edward Charles Howard was the son of a Catholic wine merchant in Sheffield, England. Feeling that he could not get a proper Catholic education in Protestant England, at the age of nine, he was sent to study in France, at the Catholic English College in Douay. In 1788, when he reached the age of fourteen, he returned to England, despite having finished only half of his schooling. His father had died six months earlier, and the troubles that were about to lead to the French Revolution were already apparent. Over the next twelve years, he became a highly skilled chemist, and was elected to be a Fellow of the Royal Society. His election was supported by his third cousin, the 11th Duke of Norfolk, and several other prominent scientists, including Peter Woulfe, who had discovered picric acid a few years earlier.

In 1800, at the age of 26, Howard published an account of his experiments with fulminating mercury in the Philosophical Transactions of the Royal Society. He describes what we now call mercury fulminate this way:

The mercurial preparations which fulminate, when mixed with sulphur, and gradually exposed to a gentle heat, are well known to chemists: they were discovered, and have been fully described, by Mr. Bayen.

MM. Brugnatelli and Van Mons have likewise produced fulminations by concussion, as well with nitrate of mercury and phosphorus, as with phosphorus and most other nitrates. Cinnabar likewise is amongst the substances which, according to MM. Fourcroy and Vauquelin, detonate by concussion with oxymuriate of potash [potassium chlorate].

But mercury and most if not all its oxides, may, by treatment with nitric acid and alcohol, be converted into a whitish crystallized powder possessing all the inflammable properties of gunpowder, as well as many peculiar to itself.

Fulminating Compounds | Science Toys (1)

He describes the procedure for making it — putting red oxide of mercury into alcohol, and then adding nitric acid. The oxide gradually dissolved, and then the mixture boiled, producing dense white smoke, and a dark precipitate that eventually turned white. He filtered the white crystals and dried them. In testing these crystals, he poured sulfuric acid on them, and was quite surprised at the resulting explosion:

I therefore, for obvious reasons, poured sulphuric acid upon the dried crystalline mass, when a violent effervescence ensued, and, to my great astonishment, an explosion took place.

He then performed more tests:

(Video) Huge Snapper Vs. Gasoline - Can they cause a fire? - SMS#3

I first attempted to make the mercurial powder fulminate by concussion; and for that purpose laid about a grain of it upon a cold anvil, and struck it with a hammer, likewise cold: it detonated slightly, not being, as I suppose, struck with a flat blow; for, upon using 3 or 4 grains, a very stunning disagreeable noise was produced, and the faces both of the hammer and the anvil were much indented.

Half a grain or a grain, if quite dry, is as much as ought to be used on such an occasion.

The shock of an electrical battery, sent through 5 or 6 grains of the powder, produces a very similar effect: it seems indeed, that a strong electrical shock, generally acts on fulminating substances like the blow of a hammer. Messrs, Fourcroy and Vauquelin found this to be the case with all their mixtures of oxymuriate of potash.

To ascertain at what temperature the mercurial powder explodes, 2 or 3 grains of it were floated on oil, in a capsule of leaf tin; the bulb of a Fahrenheit's thermometer was made just to touch the surface of the oil, which was then gradually heated till the powder exploded, as the mercury of the thermometer reached the 368th degree.

The next tests were made to test the new crystals in the same way gunpowder was normally tested:

Desirous of comparing the strength of the mercurial compound with that of gunpowder, I made the following experiment, in the presence of my friend Mr. Abernethy.

Finding that the powder could be fired by flint and steel, without a disagreeable noise, a common gunpowder proof, capable of containing eleven grains of fine gunpowder, was filled with it, and fired in the usual way: the report was sharp, but not loud. The person who held the instrument in his hand felt no recoil; but the explosion laid open the upper part of the barrel, nearly from the touch-hole to the muzzle, and struck off the hand of the register, the surface of which was evenly indented, to the depth of 0,1 of an inch, as if it had received the impression of a punch.

The instrument used in this experiment being familiarly known, it is therefore scarcely necessary to describe it ; suffice it to say, that it was of brass, mounted with a spring register, the moveable hand of which closed up the muzzle, to receive and graduate the violence of the explosion. The barrel was half an inch in caliber, and nearly half an inch thick, except where a spring of the lock impaired half its thickness.

At this point, it was time to test the new explosive in a real gun:

A gun belonging to Mr. Keir, an ingenious artist of Camdentown, was next charged with 17 grains of the mercurial powder, and a leaden bullet, A block of wood was placed at about eight yards from the muzzle, to receive the ball, and the gun was fired by a fuse. No recoil seemed to have taken place; as the barrel was not moved from its position, although it was in no ways confined. The report was feeble : the bullet, Mr. Keir conceived, from the impression made upon the wood, had been projected with about half the force it would have been by an ordinary charge, or 68 grains, of the best gunpowder. We therefore recharged the gun with 34 grains of the mercurial powder; and, as the great strength of the piece removed any apprehension of danger, Mr. Keir fired it from his shoulder, aiming at the same block of wood. The report was like the first in section IV, sharp, but not louder than might have been expected from a charge of gunpowder. Fortunately, Mr. Keir was not hurt, but the gun was burst in an extraordinary manner.

The breech was what is called a patent one, of the best forged iron, consisting of a chamber 0,4 of an inch thick all round, and 0,4 of an inch in caliber; it was torn open and flawed in many directions, and the gold touch-hole driven out. The barrel, into which the breech was screwed, was 0,5 of an inch thick; it was split by a single crack three inches long, but this did not appear to me to be the immediate effect of the explosion.

I think the screw of the breech, being suddenly enlarged, acted as a wedge upon the barrel. The ball missed the block of wood, and struck against a wall, which had already been the receptacle of so many bullets, that we could not satisfy ourselves about the impression made by this last.

As it was pretty plain that no gun could confine a quantity of the mercurial powder sufficient to project a bullet, with a greater force than an ordinary charge of gunpowder I determined to try its comparative strength in another way.

I procured two blocks of wood, very nearly of the same size and strength, and bored them with the same instrument to the same depth. The one was charged with half an ounce of the best Dartford gunpowder, and the other with half an ounce of the mercurial powder; both were alike buried in sand, and fired by a train communicating with the powders by a small touch-hole.

The block containing the gunpowder was simply split into three pieces: that charged with the mercurial powder was burst in every direction, and the parts immediately contiguous to the powder were absolutely pounded, yet the whole hung together, whereas the block split by the gunpowder had its parts fairly separated. The sand surrounding the gunpowder was undoubtedly most disturbed: in short, the mercurial powder appeared to have acted with the greatest energy, but only within certain limits.

The reason the gun was damaged is that mercury fulminate is a high explosive. Unlike gunpowder, it detonates very rapidly, producing enormous pressures without producing the large quantities of hot gas that gunpowder needs in order to produce the same explosion. This is the reason high explosives do not make good propellants for bullets, cannonballs, or shells -- they produce a shock wave that shatters whatever it is in contact with, but does not have the energy to actually move the material very far. A small amount of energy, released in a very small amount of time, has a lot of power. Power is what breaks things, while energy is what moves things. Howard is well aware of this:

From the experiments related in the 4th and 5th sections, in which the gunpowder proof and the gun were burst, it might be inferred, that the astonishing force of the mercurial powder is to be attributed to the rapidity of its combustion; and, a train of several inches in length being consumed in a single flash, it is evident that its combustion must be rapid. From the experiments of the 6th and 7th sections, it is sufficiently plain that this force is restrained to a narrow limit; both because the block of wood charged with the mercurial powder was more shattered than that charged with the gunpowder, whilst the sand surrounding it was least disturbed; and likewise because the glass globe withstood the explosion of 10 grains of the powder fixed in its centre: a charge I have twice found sufficient to destroy old pistol barrels, which were not injured by being fired when full of the best gunpowder.

Howard went on to try other metals. When he tried silver, he also got an explosive, which he is careful to note is different from the fulminating silver produced by Berthollet (and indeed, they are different compounds). Silver fulminate is even more sensitive than mercury fulminate. It cannot be stored in much quantity, since it detonates under its own weight.

Fulminating Compounds | Science Toys (2)

The next experiments were done with the assistance of the local military, where several tests were done by exploding small quantities inside cannons, and noting the shattering effects. In one test, a small cannon is destroyed, and in another, a bursting shell is demonstrated:

Finding that the carronade, from the great comparative size of its bore to that of its length, required a larger quantity of mercurial powder to burst it than we were provided with, we charged a half-pounder swivel with an ounce and an half avoirdupois of the mercurial powder, (the service charge of gunpowder being 3 ounces) and a half-pound shot between two wads. The piece was destroyed from the trunnions to the breech, and its fragments thrown thirty or forty yards. The ball penetrated five inches into a block of wood, standing at about a yard from the muzzle of the gun; the part of the swivel not broken, was scarce, if at all, moved from its original position.

One ounce avoirdupois of the mercurial powder, enclosed in paper, was placed in the centre of a shell 4,4 inches in diameter, and the vacant space filled with dry sand.

The shell burst by the explosion of the powder, and the fragments were thrown to a considerable distance. The charge of gunpowder employed to burst shells of this diameter, is 5 ounces avoirdupois.

Howard's experiments with mercury fulminate led to his being awarded the Copley Medal of the Royal Society, (an award his benefactor, Irish chemist Peter Woulfe, had earned a few years earlier). The experiments also gained him fame both at home in England, and across Europe. He went on to study meteorites, and show that they were not of this earth, but had fallen from outer space.

(Video) Family Guy - Breaking Bad

As it turns out, Howard was not the first to make mercury fulminate.

Cornelius Jacobzoon Drebbel was a Dutch engraver who later became famous for his many inventions. He made a clock that wound itself using changes in temperature and atmospheric pressure. He modified that mechanism to control the heat of a furnace (thus inventing the first thermostat). He applied the same mechanism to an incubator for raising chickens. An accident led to the discovery of a tin mordant for a bright scarlet dye (he had dissolved some tin in aqua regia, and it spilled into some cochineal dye he had planned to use in a thermometer). He made compound microscopes, and may have been the first to use two convex lenses in a microscope. He built a submarine, rowed by oars, and built of leather covering an open-bottomed wood frame.

As an alchemist, he introduced England to a method of making sulfuric acid by burning sulfur with saltpeter. He wrote a paper on the transmutation of elements in 1608, and another alchemical paper in 1621 that discusses extracts of plants, minerals, and metals. In his work for the British Navy, he devised torpedoes and sea mines, using a detonator that has caused some confusion on the part of his biographers. In the same sentence, he is said to use "Batavian tears", aurum fulminarum, and fulminating mercury to detonate the mines. Batavian tears are also known as Prince Rupert's Drops. They are teardrop shaped bits of molten glass cooled quickly in water. When the glass "tail" is broken, the entire drop shatters explosively, due to the high compression the cooling gave to the glass. Aurum fulminarum is fulminating gold, which the biographers confuse with mercury fulminate.

While Drebbel's claim to have created mercury fulminate is suspect, the German chemist Baron Johann von Löwenstern-Kunckel describes making it in 1690. In his book Laboratorium Chymicum, he tells of the vigorous reaction that mercury nitrate has with "spiritus vini" (ethanol). He describes the explosion that resulted, but was not known to have used the substance for anything. He also wrote about fulminating gold and fulminating silver, both of which were well known to alchemists of the time. His experiments with gold produced a brilliant red glass, called "ruby-glass", by incorporating gold nanoparticles, produced by precipitation from solution. The son of a glassmaker, with a long family history of glassmaking, he built several glass factories under the patronage of Frederick William, Elector of Brandenburg.

By 1807, fulminate of mercury was well known, due to the prestige of the journal where Edward Howard had published. In that year, a Scottish minister named Alexander John Forsyth patented a new way to fire a gun, using the new compound. He was an ardent duck hunter, and one of his main complaints was that the noise of the flintlock hammer striking the spark, and the subsequent flash and smoke from the primer pan, frightened the ducks into flight before the powder charge in the gun had time to fire the bird shot.

His invention involved putting a mixture of two fulminating powders, mercury fulminate and the potassium chlorate gunpowder, next to the touchhole of the gun, and modifying the flintlock mechanism to act like a hammer, striking the fulminating powder, and igniting the main charge in the gun. The fulminating powder acted very quickly on the gunpowder charge, and the ducks no longer had any warning.

Not much happened with the invention until after the patent ran out. Forsyth turned down an offer by Napoleon of 20,000 pounds sterling to bring his invention to France, and in general seemed to lack the ability to do much in the way of marketing.

After the patent expired, however, many improvements came in rapid succession by a number of different inventors in France, Switzerland, and Britain. The tube-lock held the fulminating powder in a metal tube that was crushed by the falling hammer. It was quickly succeeded by the percussion cap, a metal cup that fit over a nipple at the gun's touchhole, and was likewise crushed by the falling hammer.

Fulminating Compounds | Science Toys (3)

In Prussia, the Dreyse needle gun used a long needle to pierce a paper cartridge to hit the enclosed percussion cap.

Fulminating Compounds | Science Toys (4)

By the 1850's, the idea of putting the percussion cap, the powder charge, and the bullet into a single metallic cartridge made loading and firing a gun much faster and easier. The soft brass casing made breech-loading weapons finally practical, as it would expand in the chamber and seal in the exploding gases.

The fulminating mixture still had some problems, however. The chlorate in it, and to some extent the mercury fulminate, was corrosive, and the steel barrels of the guns were prone to rust and jam. Later primers used just the mercury fulminate, until the discovery of even better primary explosives (the name given to sensitive compounds that explode on concussion, and are used to set off less sensitive, secondary explosives).

In 1858, German chemist Peter Griess discovered diazonitrophenol, a powerful and sensitive explosive, while working with organic compounds rich in nitrogen. He is also thought to be the discoverer (in 1874) of lead styphnate, a now widely used primary explosive for primers in ammunition. The method currently used to produce lead styphnate is due to the work in 1919 by Edmund Herz. Because it is non-corrosive and less sensitive to shock than mercury fulminate, lead styphnate replaced that compound in ammunition primers.

Fulminating Compounds | Science Toys (5)

In 1891, the German chemist Julius Wilhelm Theodor Curtius discovered lead azide. While it reacts with copper, cadmium, and zinc, and alloys of those (such as brass and bronze), it does not corrode steel. It is used as a primer in the same way as lead styphnate, and is also used to make bullets that explode on impact. The year before (1890), he had discovered another primary explosive, hydrazoic acid (hydrogen azide).

It is not surprising that the first high explosives were the ones that were very sensitive, and would detonate when slightly heated or stirred. An explosion tends to get one's attention. More stable high explosives, such as picric acid, discovered by Irish chemist Peter Woulff in 1771, and trinitrotoluene (TNT), discovered in 1863 by German chemist Julius Wilbrand, and were used as dyes until their explosive nature was discovered much later.

The sensitive primary explosives are a diverse group. There are many ways to make a chemical that comes apart easily, or is made of things that bind much stronger to one another in a different arrangement. An example of a molecule that comes apart easily is benzvalene:

Fulminating Compounds | Science Toys (6)

Notice how four of the six carbon atoms are connected by acute bond angles. This causes strain, and the molecule relieves that strain by reconfiguring into simpler smaller molecules explosively.

An example of a molecule whose parts bind tighter when rearranged is lead azide:

Fulminating Compounds | Science Toys (7)

Those two groups of three nitrogen atoms could relax into three groups of two nitrogen atoms, with a strong triple bond joining each pair, thus releasing a lot of energy. Many azides are explosive, and usually quite sensitive to heat, friction, and concussion.

Fulminating Compounds | Science Toys (8)

(Video) THROWING SATISFYING THINGS INTO A GIANT FAN!

Sodium azide is another high explosive that you might find in your garage. It is the explosive used to inflate airbags in cars. A mixture of sodium azide with potassium nitrate and silicon dioxide (silica) is detonated inside the bag when the electronics detect a collision. The highly toxic sodium azide is converted to sodium metal and nitrogen gas. The gas expands the bag. The sodium metal reacts with the potassium nitrate, producing potassium oxide and sodium oxide (and a little extra nitrogen gas). The metal oxides combine with the silica to produce silicate glass, a harmless by-product.

The amount of explosive in airbags is substantial. In a driver's side front airbag, there is about 50 grams of sodium azide. The passenger side airbag is bigger (the passenger is farther away) and contains 200 to 250 grams of explosive. Together, they have about 20 shotgun-shells worth of explosive.

Most primary explosives have both features of an explosive — they come apart easily, and they recombine into smaller parts that are bound more tightly to one another than they were in the original molecule.

Another feature of many explosive compounds is the presence of an oxidizer on the same molecule as a fuel. We saw with gunpowder that getting the fuel and the oxidizer close together made the product burn faster. By using a better oxidizer, Fourcroy's gunpowder made with potassium chlorate instead of potassium nitrate would explode by concussion. But what if we put the fuel on the same molecule as the chlorate oxidizer? We get something like ammonium chlorate:

Fulminating Compounds | Science Toys (9)

The chlorine atom has three oxygen atoms to lose, and the nitrogen atom has three hydrogen atoms to lose. When the molecule is heated or hit with a hammer, we get nitrogen gas, water vapor, hydrogen chloride gas, and a loud bang.

Another example is the class of explosives that combine peroxides with hydrocarbons. A peroxide is two oxygen atoms connected by a weak single bond. That bond is easily broken, and the oxygen atoms are then free to rearrange with the carbon atoms and hydrogen atoms to form carbon dioxide and water vapor. An example is triacetone triperoxide, also known as TATP:

Fulminating Compounds | Science Toys (10)

Triacetone triperoxide was discovered by German chemist Richard Wolffenstein in 1895. Because it is easy to make from household products, it was used by Palestinian suicide bombers and in several bombings in Europe. It is a sensitive primary explosive, and often detonates during manufacture, taking with it the bomb makers.

You can see in the image that there are three acetone molecules connected by three peroxide links. Those links break, and the oxygen atoms combine with the carbon atoms and hydrogen atoms violently.

Another explosive peroxide is one you might have in your medicine cabinet. Benzoyl peroxide is used to bleach flour (peroxides make good bleaching agents), and to clear up acne. In pure form, it is a primary explosive, detonating by heat or shock. In dilute form, it can be applied to the skin, where it breaks down into oxygen, which kills germs by its bleaching action, and benzoic acid, which is a topical antiseptic:

Fulminating Compounds | Science Toys (11)

Yet another explosive peroxide that you might find in a household cleaning product or in a swimming pool disinfectant is peroxymonosulfuric acid:

Fulminating Compounds | Science Toys (12)

Produced by mixing sulfuric acid with hydrogen peroxide, it is one of the strongest oxidizing agents known. An explosive by itself in pure form, it is also capable of adding a peroxide group to compounds of carbon and hydrogen that it touches, making other explosives, such as acetone peroxides. It was first discovered in 1898 by German chemist Heinrich Caro, and is sometimes called Caro's acid.

If you work with any of the common two-part plastic resins, you may have a third explosive in your house. Methyl ethyl ketone peroxide (MEKP) is used as a catalyst and hardener for thermosetting polyester plastics. Similar to triacetone triperoxide, the compound is quite explosive, and quite sensitive to shock and heat. Fortunately, in dilute form, it does not explode:

Fulminating Compounds | Science Toys (13)

Because primary explosives are such a diverse group, they include several compounds that are unique or unusual, even for explosives.

One such unique compound is copper acetylide, one of the few explosives that produces no gases when it detonates. It is made by passing acetylene gas through a solution of copper chloride and ammonia. The red precipitate is quite sensitive to heat and shock. Acetylene plants no longer use copper pipes because of the danger of producing this explosive accidentally:

Fulminating Compounds | Science Toys (14)

Silver acetylide is also explosive and produces no gas. Silver acetylide mixed with silver nitrate (which adds oxygen to combine with the carbon) is used in some commercial explosives. It is a little less explosive than the pure silver acetylide, and does produce gases on detonation.

Another interesting special case molecule is xenon trioxide:

Fulminating Compounds | Science Toys (15)

Noble gases like xenon do not combine with other atoms easily. Xenon trioxide easily and explosively breaks down into the gases xenon and oxygen. It is an extremely powerful oxidizing agent, and the dry crystals will explode on contact with cellulose and other organic molecules. It will detonate spontaneously at room temperature. Xenon dioxide is also explosive, and xenon tetroxide explodes if it gets above -35.9° Celsius.

(Video) Breaking Bad Finale Breakdown | MythBusters

Another curious special case is explosive antimony. Antimony crystals can come in two forms. One is a stable metallic form, with shiny lustrous crystals. This is called β-antimony. Another is a yellow form, called α-antimony, which changes into the metallic form when heated. If exposed to light, α-antimony turns into a third form, which is black and non-crystalline. This black form turns into the metallic β-antimony when heated.

In 1858, the English electrochemist George Gore (one of the many inventors of the safety matches we use today), was electroplating antimony from a solution of antimony trichloride onto a piece of copper. This produced a fourth form of antimony. It is a solid solution of antimony trichloride in α-antimony. It has the appearance of shiny gray graphite.

When he scraped some of it off the copper electrode for analysis, it exploded.

The α-antimony releases a good deal of heat when it transforms back into the shiny β-antimony form. This raises the temperature to 250° Celsius, and vaporizes the antimony trichloride in a puff of toxic white smoke. When crushed in a mortar and pestle, it detonates with a loud crack.

It is perhaps not surprising that the invention of an exploding compound might change history. The subtlety by which is happens, however, is interesting. In 1812, the French chemist Pierre Louis Dulong was experimenting with chlorine gas and ammonium nitrate, and purifying the reaction products. One of those reaction products is nitrogen trichloride. It is a very sensitive high explosive, and in two explosions, he lost two fingers and an eye (one might ask why he wasn't much more careful after the first explosion, but that bit of history doesn't seem to have survived the passage of time).

Fulminating Compounds | Science Toys (16)

A year later, the Cornish chemist and newly knighted Sir Humphry Davy, former lecturer at the Royal Institution, also damaged his eyesight in a nitrogen trichloride explosion. As the discoverer of the elements potassium, sodium, calcium, magnesium, boron, and barium, he was the person who gave the name chlorine to the gas Swedish chemist Carl William Scheele had discovered in 1774, and insisted it was an element.

Davy describes the new explosive in the Philosophical Transactions of the Royal Society on November 5, 1812:

I immediately exposed a phial, containing about six cubical inches of chlorine, to a saturated solution of nitrate of ammonia, at the temperature of about 50° in common day-light. A diminution of the gas speedily took place; in a few minutes a film, which had the appearance of oil, was seen on the surface of the fluid; by shaking the phial is collected in small globules, and fell to the bottom. I took out one of the globules, and exposed it in contact with water to a gentle heat: long before the water began to boil, it exploded with a very brilliant light, but without any violence of sound.

...An attempt was made to procure the substance in large quantities, by passing chlorine into Wolfe's bottles, containing the different solutions, but a single trial proved the danger of this mode of operating; the compound had scarcely began to form, when, by the action of some ammoniacal vapour on chlorine, heat was produced, which occasioned a violent explosion, and the whole apparatus was destroyed.

I attempted to collect the products of the explosion of the new substance, by applying the heat of a spirit lamp to a globule of it, confined in a curved glass tube over water: a little gas was at first extricated, but long before the water had attained the temperature of ebullition, a violent flash of light was perceived, with a sharp report; the tube and the glass were broken into small fragments, and I received a severe wound in the transparent cornea of the eye, and obliges me to make this communication by an amanuensis. This experiment proves what extreme caution is necessary in operating on this substance, for the quantity I used was scarcely as large as a grain of mustard seed.

...The mechanical force of this compound in detonation, seems to be superior to that of any other known, not even excepting the ammoniacal fulminating silver. The velocity of its action appears to be likewise greater.

The damage to his eyes caused him to hire a valet, who could also assist him in his experiments. That young man was Michael Faraday, who went on to become an even more famous scientist (thus the subtle effects of explosions on history). And, in proof that even brilliant people don't learn from their mistakes, both Faraday and Davy were injured in yet another experiment with nitrogen trichloride, although this time some precautions were taken:

The action of mercury on the compound appeared to offer a more correct and less dangerous mode of attempting its analysis; but on introducing two grains under a glass tube filled with mercury and inverted, a violent detonation occurred, by which I was slightly wounded in the head and hands, and should have been severely wounded, had not my eyes and face been defended by a plate of glass attached to a proper cap, a precaution very necessary in all investigations of this body.

Soon after Humphry Davy hired Faraday, the two were on a trip to France (to receive a medal from Napoleon Bonaparte for Davy's work in electrochemistry). There, the famous French chemist Joseph Louis Gay-Lussac told him about a new substance discovered by a fellow French chemist named Bernard Courtois.

Courtois owned a factory that produced potassium nitrate for Napoleon's war efforts. The gunpowder factories were having trouble finding enough wood ash with which to make the nitrate. Courtois turned to using seaweed ashes, since seaweed was abundant on the French coast. Courtois was trying to find out what was causing the corrosion on the copper pots used to process the seaweed ash. He added sulfuric acid to the ash, and noticed a peculiar purple vapor.

Davy writes about the "peculiar substance" in the Philosophical Transactions of the Royal Society on January 20, 1814:

A new and very curious substance has recently occupied the attention of chemists at Paris.

This substance was accidentally discovered about two years ago by M. Courtois, a manufacturer of saltpeter in Paris. In his processes for procuring soda from the ashes of sea weeds (cendres de vareck) he found the metallic vessels much corroded; and in searching for the cause of this effect, he made the discovery. The substance is procured from the ashes, after the extraction of the carbonate of soda, with great facility, and merely by the action of sulfuric acid: — when the acid is concentrated, so as to produce much heat, the substance appears as a vapour of a beautiful violet color, which condenses in crystals having the colour and the luster of plumbago.

M. Courtois soon after he had discovered it, gave specimens of it to M. M. Desormes and Clement for chemical examination; and those gentlemen read a short memoir upon it, at a meeting of the Imperial Institute of France, on Nov. 29th. In this memoir, these able chemists have described its principal properties; they mentioned that its specific gravity was about four times that of water, that it becomes a violet coloured gas at a temperature below that of boiling water, that it combines with the metals and with phosphorus and sulphur, and likewise with the alkalies and metallic oxides, that it forms a detonating compound with ammonia...

Davy performs his own experiments, and concludes that the "curious substance" is not a compound, but an "undecompounded body" (i.e. an element), which he names iodine.

The detonating compound is nitrogen triiodide.

Fulminating Compounds | Science Toys (17)

Nitrogen triiodide is the only known explosive that is so sensitive it will detonate when hit by alpha particles (helium nuclei produced by radioactive elements). Chemistry professors love to demonstrate how it can be set off using the touch of a feather.

(Video) 150 mph Rocket Knife

FAQs

How do you make silver fulminate at home? ›

The silver fulminate used in this demonstration is prepared by dissolving 8.4 g silver nitrate in 39.5 g concentrated nitric acid diluted with 8.4 g water, and heating a mixture of 1 part of this solution with 1.2 parts of ethanol to about 60°C until a precipitate forms.

What makes silver fulminate explode? ›

The compound becomes progressively sensitive as it is aggregated, even in small amounts; the touch of a falling feather, the impact of a single water droplet, or a small static discharge are all capable of explosively detonating an unconfined pile of silver fulminate no larger than a dime and no heavier than a few ...

Is mercury fulminate gunpowder? ›

Mercury(II) fulminate, or Hg(CNO)2, is a primary explosive. It is highly sensitive to friction, heat and shock and is mainly used as a trigger for other explosives in percussion caps and detonators.
...
Mercury(II) fulminate.
Names
Shock sensitivityHigh
Friction sensitivityHigh
Detonation velocity4250 m/s
Hazards
31 more rows

Is fulminate mercury toxic? ›

Mercury(II) fulminate is sensitive to shock, friction and heat. Its decomposition products contain carbon dioxide/monoxide, nitrogen and mercury vapors, with the latter being extremely toxic. Mercury fulminate is very toxic and ingestion may cause death.

What chemicals can you use to make an explosion? ›

Peroxides (inorganic), when mixed with combustible materials, barium, sodium, and potassium, form explosives that ignite easily. Phosphorus (P), both red and white, forms explosive mixtures with oxidizing agents.

What are the three ingredients required to create a simple explosion? ›

To create a simple explosion requires three essential ingredients: a means of ignition, a fuel source, and oxygen to support the rapid combustion, which, if confined, will produce an explosion.

What household items can cause an explosion? ›

In other words, DO NOT use this list as a guide for how to prevent explosions.
  • Hot water heater. ...
  • Food storage containers with spoiled food. ...
  • Baked potatoes. ...
  • Sausages. ...
  • Light bulb. ...
  • Beer bottle left in the freezer. ...
  • Opening sealed containers in high altitudes. ...
  • Aerosol cans in sunlight or heat.
6 Apr 2012

What chemical is in Christmas crackers? ›

Christmas crackers owe their crack to a compound called silver fulminate. This compound has the molecular formula AgCNO, and can be prepared relatively simply by reacting concentrated nitric acid with silver and ethanol.

What chemical is in fun snaps? ›

Bang snaps (snap-its, poppers, whipper snappers, fun snaps, cherry poppers, etc.): Mainly composed of small amounts of gravel and silver fulminate (the explosive component) wrapped in paper.

Can mercury be used in bullets? ›

Mercury fulminate has been used in ammunition primers and detonators.

Can fulminated mercury be used as an explosive? ›

 Fulminated mercury [Hg(CNO)2] is indeed an explosive, classically used as a trigger in blasting caps used to set off larger explosives.

Where can I buy mercury fulminate? ›

Where to Find Fulminated Mercury. Starts to drop from the members of the Sunken Valley Clan, once Time of Day in the game has advanced to evening. While farming, you have to have the effect of the Demon Bell ("Sinister Burden") active, for the following enemies to drop the material: Sunken Valley Clan (Rifle)

What products still contain mercury? ›

Products That May Contain Mercury
  • thermometers (looks like a silvery liquid)
  • thermostats.
  • blood-pressure cuffs.
  • barometers.
  • fluorescent and high-intensity discharge (HID) lamps.
  • mercurochrome.
  • auto switches.
  • float switches.
28 Jan 2022

What is the most toxic mercury? ›

Methylmercury [CH3Hg] is the most toxic form. It affects the immune system, alters genetic and enzyme systems, and damages the nervous system, including coordination and the senses of touch, taste, and sight.

Why is fulminate explosive? ›

The fulminate ion is a pseudohalic ion because its charge and reactivity are similar to those of the halogens. Due to the instability of the ion, fulminate salts are friction-sensitive explosives.

What two chemicals will explode when mixed? ›

For decades, science enthusiasts have delighted at the famously energetic way sodium and potassium explode on contact with water.

What happens if you mix acetone and peroxide? ›

Hydrogen peroxide mixed with organic solvents is known to form dangerous peroxides. Hydrogen peroxide and acetone is an especially hazardous combination that can form various explosive peroxides when mixed at high concentration while using an acid catalyst.

What is the most explosive compound? ›

Azidoazide azide has been called “the most dangerous explosive material in the world.” It is also No. 3 in K. S. Lane's list “The 10 Most Dangerous Chemicals Known to Man”.

What are the 3 types of explosives? ›

1. Introduction
  • blasting and bulk explosives (explosives used for commercial blasting applications or for their manufacture); ...
  • perforating explosives (intended for use in the oil and gas well industry); ...
  • special-application explosives (high explosives used for other applications, including primary explosives).
27 Apr 2020

How do you make a science explosion for kids? ›

Ivory Soap Explosion

This was the simplest of all the experiments we tried! All you need to do is place a bar of Ivory soap on a microwave-safe plate and microwave for two minutes. Just make sure the plate is large to prevent any spillage. I have never heard my kids squeal with so much delight staring at the microwave!

What two chemicals should never be mixed? ›

Dangers of Mixing Household Chemical Cleaners
  • Bleach + Vinegar = Chlorine gas. This can lead to coughing, breathing problems, burning and watery eyes. ...
  • Bleach + Ammonia = Chloramine. ...
  • Bleach + Rubbing alcohol = Chloroform. ...
  • Hydrogen peroxide + Vinegar = peracetic/ peroxyacetic acid.

What liquids can cause an explosion? ›

Liquids (such as petrol and other fuels) and solvents in industrial products (such as paint, ink, adhesives and cleaning fluids) give off flammable vapour which, when mixed with air, can ignite or explode.

What powder can explode? ›

Combustible dust, also known as explosive dust, is a by-product created from manufacturing processes that involve combustible raw materials. These materials include wood, light metals, several kinds of chemicals, but also agricultural products such as grain, spices, and tobacco.

Do crackers have gun powder? ›

Gunpowder, which is basically 75% potassium nitrate, 15% charcoal and 10% sulphur, is at the heart of firecrackers. The Petroleum and Explosive Safety Organisation (PESO) has identified four ingredients in firecrackers such as “garland crackers”, “atom bombs”, salute or maroons and what are called “Chinese crackers”.

What is the explosive used in crackers? ›

Chemicals: A black powder, also known as gun powder, which contains charcoal, sulphur and potassium nitrate. A tight paper tube with a fuse is used to light the powder. Metal: A composition used in a firecracker might have aluminum instead of or in addition to charcoal to brighten the explosion.

What organic compounds are in a cracker? ›

Organic Compounds

A cracker is made of flour, baking soda and water. The flour contains a lot of carbohydrates (starches) but no sugar, so the cracker is not sweet. The cracker is an example of a complex carbohydrate. Complex carbohydrates give the body long lasting energy.

What is in Pop Its that make them pop? ›

The "rock' is gravel or sand that has been soaked in silver fulminate. The coated grains are twisted into a piece of cigarette paper or tissue paper. When the bang snap is thrown or stepped on, the friction or pressure detonates the silver fulminate.

How much silver fulminate is in Snap N Pop? ›

Composition. Bang snaps consist of a small amount of gravel or coarse sand impregnated with a minute quantity (~0.2 milligrams) of silver fulminate high explosive and twisted in a cigarette paper to produce a shape resembling a cherry.

What are Pop Its made out of? ›

Most Pop Its are made of silicon — which makes them easy to clean. Some are designed as phone cases, or a favorite character from a movies or game. They can be used anywhere, like the car, airplane, restaurant, school, or the office. The toys are easy to travel with, because they don't have multiple pieces.

What is a Devastator bullet? ›

The most infamous use of such bullets was the attempted assassination of President Reagan in 1981 by John Hinckley, who used “Devastator” bullets (Bingham Limited, USA) composed of a lacquer sealed aluminium tip with a lead azide centre designed to explode on impact.

Can magnets fire a bullet? ›

Usually, the answer is no.

Bullets are usually made of lead, maybe with a copper jacket around them, neither of which sticks to a magnet. These magnets made a bullet tumble on Mythbusters, but didn't change where it hit the target. The magnet might impart some force on the bullet via Eddy Currents.

What happens if you inject mercury to body? ›

If inorganic mercury enters your bloodstream, it can attack the kidneys and brain. Permanent kidney damage and kidney failure may occur. A large amount in the bloodstream may cause massive blood and fluid loss from diarrhea and kidney failure, leading to death.

What is the most powerful explosive used in blasting? ›

Guncotton is the most powerful explosive. Generally, Guncotton is used for blasting purposes.

What chemical is used to melt bodies in Breaking Bad? ›

In a gruesome scene, Jesse adds hydrofluoric acid (HF) to dissolve the body. It's a useful acid to have in any lab because of its unusual chemistry.

How unstable is fulminated mercury? ›

Mercury fulminate (or fulminate of mercury, as Walt rightly calls it) Hg(ONC)2 is a very unstable and explosive compound. Although first prepared back in 1800, because of its instability the crystal structure was only fully determined as recently as 2007.

What is an example of fulminate? ›

Verb She was fulminating about the dangers of smoking. The editorial fulminated against the proposed tax increase.

What does mercury fulminate look like? ›

Mercury(II) fulminate, or fulminated mercury is an explosive substance with the chemical formula Hg(CNO)2. The substance was used as an example of an explosive chemical by Walter White during chemistry class in the episode "Crazy Handful of Nothin'". A bagful of it looks like crystal meth.

What electronics contain mercury? ›

Mercury is used in LCD screens and monitors. It is also used in laptop screen shutoffs. Televisions manufactured before 1991 may also contain mercury switches. These products need to be properly disposed at household hazardous waste collection centers.

How long does mercury stay in the brain? ›

The biological half-life of mercury is estimated to be approximately 30 to 60 days in the body [4]. The half-life of mercury in the brain is not entirely clear, but is estimated to be as long as approximately 20 years.

What devices use mercury? ›

Products that contain mercury: medical and measuring devices
  • Barometers and Vacuum Gauges.
  • Flame Sensors.
  • Flowmeters.
  • Hydrometers.
  • Hygrometers/Psychrometers.
  • Manometers.
  • Pyrometers.
  • Thermostat Probes.
26 Apr 2010

What does mercury smell like? ›

Mercury vapor is not irritating and has no odor, so people do not know when they are breathing it. Even the small amount of mercury from a broken thermometer can cause harm, especially to children, unless it is properly cleaned up and removed.

How much is mercury worth? ›

1 MER = 0.0006051 USD.

What are 5 heavy metals? ›

Mercury, lead, chromium, cadmium, and arsenic have been the most common heavy metals that induced human poisonings. Here, we reviewed the mechanistic action of these heavy metals according to the available animal and human studies.

Is fulminate toxic? ›

Fulminates are very toxic, about the same as cyanides. When pure, silver fulminate is chemically very stable, not decomposing after years of storage. Like many silver salts, it darkens with light exposure. It is only slightly soluble in cold water and can be recrystallized using hot water.

What is fulminate used for? ›

Mercury(II) fulminate, or Hg(CNO)2, is a primary explosive. It is highly sensitive to friction, heat and shock and is mainly used as a trigger for other explosives in percussion caps and detonators.

Why is fulminate so unstable? ›

The fulminate ion is unstable because the least electronegative attracts an electron (negative charge) while the atom with a higher electronegativity lost an electron, which rarely happens and the atoms are at unfavorable states.

How do you make an explosion with magnesium? ›

Magnesium explodes when heated with stannic oxide [Mellor 7:401 1946-47]. Powdered magnesium plus potassium or sodium perchlorate is a friction-sensitive explosive [Safety Eng. Reports 1947]. An explosion occurred during heating of a mixture of potassium chlorate and magnesium [Chem.

What explosive is in Pop Its? ›

The thing that gives bang snaps their bang—or pop-its their pop, snappers their snap, etc—is very small amount of silver fulminate, an explosive that is very sensitive to impact, but is relatively harmless in low quantities; you'd be hard-pressed to use them to start a blaze even if you're actually trying.

Are TNT Pop Its safe? ›

Conclusion: Pop-Its® are fundamentally not safe for children to use or play with. Even though the amount of Lead found in these Pop-Its® may be perceived as “small” or “insignificant”, all regulatory agencies (FDA, CDC, EPA, etc.) agree that there is no safe level of Lead exposure for children.

What are Pop Its made of? ›

Most Pop Its are made of silicon — which makes them easy to clean. Some are designed as phone cases, or a favorite character from a movies or game. They can be used anywhere, like the car, airplane, restaurant, school, or the office. The toys are easy to travel with, because they don't have multiple pieces.

What will make sulfur explode? ›

Sulfur may form an ignitable vapor/air mixture in closed tanks or containers. Sulfur reacts explosively with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE).

Can you make an explosive with glycerin? ›

Glycerol also finds use as a precursor to explosives: it is the starting material in the manufacture of nitroglycerin, the explosive liquid commonly found in dynamite and some propellants. It's produced by reacting glycerol with sulfuric acid and nitric acid.

Can I melt my own silver? ›

Place the metal into a ceramic crucible and begin heating it with your torch to melt it. Add a small amount of borax as it heats and starts to melt to prevent it from oxidizing. Carefully swirl the crucible as the metal begins to melt until it's completely liquified. A finished silver piece by Allen McGhee.

Why does silver go black? ›

Silver becomes black because of hydrogen sulfide (sulfur), a substance that occurs in the air. When silver comes into contact with it, a chemical reaction takes place and a black layer is formed. Silver oxidizes faster in places with a lot of light and high humidity.

Videos

1. Sulfur Nitride, My Arch Nemesis - Ex&F
(Explosions&Fire)
2. Do Larger Breasts Equal Bigger Tips? | MythBusters
(Discovery)
3. Silver Fulminate: Precautions and Warning
(JB Chem)
4. How Bakugo's Sweaty Quirk Works (Building Explosive Grenadier Bracers) | My Hero Academia Month!!!
(Allen Pan)
5. Making DDNP from a 1969 Army Manual
(ReactiveChem)
6. Mercury fulminate vs Nokia
(pyrochemik)
Top Articles
Latest Posts
Article information

Author: Laurine Ryan

Last Updated: 02/16/2023

Views: 6248

Rating: 4.7 / 5 (57 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Laurine Ryan

Birthday: 1994-12-23

Address: Suite 751 871 Lissette Throughway, West Kittie, NH 41603

Phone: +2366831109631

Job: Sales Producer

Hobby: Creative writing, Motor sports, Do it yourself, Skateboarding, Coffee roasting, Calligraphy, Stand-up comedy

Introduction: My name is Laurine Ryan, I am a adorable, fair, graceful, spotless, gorgeous, homely, cooperative person who loves writing and wants to share my knowledge and understanding with you.